
DNS Tunneling: how DNS can be (ab)used by
malicious actors

168,790 people reacted  40 11 min. read

This post is also available in: 日本語 (Japanese)

Malicious actors have utilized Command & Control (C2) communication channels over the Domain Name Service
(DNS) and, in some cases, have even used the protocol to exfiltrate data. This is beyond what a C2 “heartbeat”
connection would communicate. Malicious actors have also infiltrated malicious data/payloads to the victim
system over DNS and, for some years now, Unit 42 research has described different types of abuse discovered.

DNS is a critical and foundational protocol of the internet – often described as the  “phonebook of the internet” –
mapping domain names to IP addresses, and much more, as described in the core RFCs for the protocol. DNS’
ubiquity (and frequent lack of scrutiny) can enable very elegant and subtle methods for communicating, and
sharing data, beyond the protocol’s original intentions.

On top of the examples of DNS use mentioned already, a number of tools exist that can enable, amongst other
things, their attackers to create covert channels over DNS for the purposes of hiding communication or bypassing
policies put in place by network administrators. A popular use case is to bypass hotel, café etc Wi-Fi connection
registration by using the often-open and available DNS. Most notably these tools are freely available online in
places like GitHub and can be easy to use. More information about these tools can be found in the Appendix
section at the end of this report.

In this report we introduce the types, methods, and usage of DNS-based data infiltration and exfiltration and
provide some pointers towards defense mechanisms.

DNS
DNS uses Port 53 which is nearly always open on systems, firewalls, and clients to transmit DNS queries. Rather
than the more familiar Transmission Control Protocol (TCP) these queries use User Datagram Protocol (UDP)
because of its low-latency, bandwidth and resource usage compared TCP-equivalent queries. UDP has no error or
flow-control capabilities, nor does it have any integrity checking to ensure the data arrived intact.

How is internet use (browsing, apps, chat etc) so reliable then? If the UDP DNS query fails (it’s a best-effort
protocol after all) in the first instance, most systems will retry a number of times and only after multiple failures,
potentially switch to TCP before trying again; TCP is also used if the DNS query exceeds the limitations of the
UDP datagram size – typically 512 bytes for DNS but can depend on system settings.

Figure 1 below illustrates the basic process of how DNS operates: the client sends a query string (for example,
mail.google[.]com in this case) with a certain type – typically A for a host address. I’ve skipped the part whereby
intermediate DNS systems may have to establish where ‘.com’ exists, before finding out where ‘google[.]com’ can
be found, and so on.

Figure 1. Simplified DNS operation

Once a name is resolved to an IP caching also helps: the resolved name-to-IP is typically cached on the local
system (and possibly on intermediate DNS servers) for a period of time. Subsequent queries for the same name
from the same client then don’t leave the local system until said cache expires. Of course, once the IP address of
the remote service is known, applications can use that information to enable other TCP-based protocols, such as
HTTP, to do their actual work, for example ensuring internet cat GIFs can be reliably shared with your colleagues.

So, all in all, a few dozen extra UDP DNS queries from an organization’s network would be fairly inconspicuous
and could allow for a malicious payload to beacon out to an adversary; commands could also be received to the
requesting application for processing with little difficulty.

If you want to go deep on how DNS works – all the way from you typing keys to spell the domain name you want
to browse – then please read this article.

Data Trail
Just as when you browse the internet, whether pivoting from a search engine result or directly accessing a website
URL, your DNS queries also leave a trace. How much of a trace depends on the systems and processes involved
along the way, from the query leaving the operating system, to receiving the resultant IP address.

Focusing on the server-side only and, using some basic examples, it’s possible for DNS servers – especially those
with extended or debug logging enabled – to gather a whole host (no pun intended) of information about the
request, and client requesting it.

This article provides some idea of the type of information that could be gleaned from DNS server logs; an
adversary operating such a server gets the remote IP sending the request – though this could be the last hop or
DNS server’s IP, not the exact requesting client’s IP – as well as the query string itself, and whatever the response
was from the server.

DNS Tunneling
Now that we have a common understand of DNS, how it operates in a network, and the server-side tracing
capabilities, let’s dig a little deeper into the tunneling capabilities. In this section we will describe how command
and control (C2) beacons can operate over DNS, and how data exfiltration and infiltration is possible.

C2
A C2 channel often serves two purposes for the adversary. Firstly, it can act as a beacon or heartbeat indicating
that their remote payload is still operating – still has a heartbeat – as it’s beaconing-out (communicating) to their
server.

You could consider the basic DNS operation, as shown in Figure 1 above, as an example of a heartbeat. If the
malicious implant on the client system repeatedly sends a query to the actor’s server through the DNS
infrastructure, the actor could tell from the logs that an implant is running. What becomes difficult is
distinguishing between multiple victims that are infected with the implant.

Consider another example described by Figure 2 below, where the client system is compromised with malware
that’s constructing strange-looking query strings to send over DNS. Queries like these still act as a heartbeat
indicating to the adversary their payload is still active, however they also provide some basic meta-data about the
victim and, importantly, ways to uniquely identify one victim from another.

Figure 2. Example C2 DNS query operation

Usernames and hostnames may not always be unique, and some IPs could be duplicated across multiple networks
using Network Address Translation (NAT), however systems do have Universal Unique Identifiers (UUIDs) or other
properties, that when combined could create a unique identifier for a given host or victim.

Some of the meta-data from the compromised host could be sent as plaintext but might appear more suspicious at
first glance to anyone seeing such strings in a DNS query. In many cases the data will contain characters not
supported by DNS, in which case encoding will be required. In Figure 2 you can see the base64 encoded
equivalent for the meta-data, which is constructed using a ‘-‘ delimited notation for simple parsing and decoding
on the server-side, as shown in Figure 3 below.

Figure 3. Server-side DNS logs tracking C2 communication

Figure 3 shows an example of what a raw DNS log from a DNS server application may look like, with line entries
for the malware’s query and the DNS server’s response, NXDOMAIN (or non-existent domain), in this case.

In some ways, a log like this, or perhaps a small database containing the decoded records from them, could be
compared to the more snazzy-looking botnet control panels that allow the botnet herder to control their zombie
victim systems.

Exfiltration
So, what else could be sent up in DNS queries? Well, anything in theory, so long as it’s encoded correctly and
doesn’t abuse the UDP size limits. A way for getting around the latter constraint could be to send multiple A record
messages and have them stitched together somehow on the server-side. Complications would arise however in
dropped or missing datagrams.

Unlike TCP that ensures retransmission of failed packets, UDP has no such mechanism. An algorithm would be
required to understand how many messages will be sent, and check the correct number arrives, but more
complicated than that, somehow ask the client to retransmit certain segments of the data again until 100% arrives.
Depending on the amount of data to transmit – every PDF on the system, for example – may take an age, and look
hugely suspicious to network administrators.

Infiltration
In contrast, infiltration of data whether it be code, commands, or a binary file to drop to disk and execute could be
much easier, especially using the DNS type of TXT (as opposed to host record type A). TXT types were designed to
provide descriptive text, such as service details, contact names, phone numbers, etc in response to TXT DNS
queries for domain names.

Guess what looks likes text? Base64-encoded non-text data! Figure 4 below shows the identical query being sent
to the malicious site as in Figure 2, however, the type is now TXT on both the request and response, and the
response data contains the first 300 or so characters of an encoded binary executable file that could be executed
by the client malware. Again, using the logs, the adversary would be able to know which client asked for the
payload, and that the payload was sent (who knows if it actually arrived…).

Figure 4. Example C2 DNS query with TXT type response

But how does the malicious implant know to change the type to TXT or when to request whatever lies inside the
“text” data? It could be built-in to the payload to query at a certain point in its execution or after a certain amount
of time but in reality, it’s going to be actor-driven using the second purpose of a C2 channel – control.

In my earlier examples of C2 DNS communication the response from the DNS server was NXDOMAIN. This
message obviously reaches the client system (and the malware) and could be used a message or instruction for the
payload but it’s limiting without parameters and detail. Enter NOERROR.

NOERROR, as the term suggests means everything worked fine – your request was processed and an answer
awaits you. With a NOERROR comes a response that can be processed. Usually this is the IPv4 (for A type
requests) or IPv6 (for AAAA type requests) or it could be TXT, as shown in Figure 4 above. Focusing on a simple
example – the IPv4 address response – the malware doesn’t need an actual IP to communicate with, unlike your
browser that asked “where is google[.]com at?”. The malware is already in communication to its destination using
the C2 over DNS.

What the malware can use the IP response for is any one of 4,294,967,296 possible commands or instructions.
Again, keeping this very simple still, it’s possible that a particular value in the 4  octet of the IP, say, 100, would
indicate to the malware to send a TXT DNS query to the actor’s domain to collect and execute a payload. Value 10
in the first octet could mean to uninstall and wipe traces of the malicious payload from the operating system and
event logs. Literally, the options are endless, as are the levels of possible sophistication.

Given the adversary has control over the DNS server, and that certain DNS server applications or daemons are
highly configurable, it’s possible to send conditional responses back to the malware on the victim systems based
on requests sent from them.

For example, if the incoming query contains a certain flag – a character – as the first subdomain to the domain
name, it could be read by a program running inside the DNS service on the server and provide a custom response
back to the client. This could be used for the malware to work through a set of tasks automatically, and report
back accordingly to the actors to receive their next task.

Conclusion
DNS is a very powerful tool used almost everywhere allowing applications and systems to lookup resources and
services with which to interact. DNS provides a communication foundation enabling higher-level and more
powerful protocols to function but can mean it’s overlooked from a security point of view, especially when you
consider how much malware is delivered via email protocols or downloaded from the web using HTTP.

For these reasons, DNS is the perfect choice for adversaries who seek an always-open, often overlooked and
probably underestimated protocol to leverage for communications from and to compromised hosts. Unit 42 has
seen multiple instances of malware, and the actors behind them, abusing DNS to succeed in their objectives, as
discussed in this report.

Organizations can defend themselves against DNS tunneling in many different ways, whether using Palo Alto
Networks’ Security Operating Platform, or Open Source technology. Defense can take many different forms such
as, but not limited to, the following:

Blocking domain-names (or IPs or geolocation regions) based on known reputation or perceived danger;

Rules around “strange looking” DNS query strings;

Rules around the length, type, or size of both outbound or inbound DNS queries;

General hardening of the client operating systems and understanding the name resolution capabilities as well
as their specific search order;

User and/or system behavior analytics that automatically spot anomalies, such as new domains being accessed
especially when the method of access and frequency are abnormal.

Palo Alto Networks recently introduced a new DNS security service focused on blocking access to malicious
domain names.

Further information can also be found in the ATT&CK framework documentation on Mitre’s website. Specifically,
the following techniques relate to concepts discussed in this report.

ID Technique

T1048 Exfiltration Over Alternative Protocol

T1320 Data Hiding

T1094 Custom Command and Control Protocol

Thanks to Yanhui Jia, Rongbo Shao, Yi Ren, Matt Tennis, Xin Ouyang, John Harrison and Jens Egger for their input
on this report.

Appendix: Toolkit List
Tool Name Description

dns2tcp
dns2tcp was written by Olivier Dembour and Nicolas Collignon. It is
written in C and runs on Linux. The client can run on Windows. It
supports KEY and TXT request types. [4]

tcp-over-dns
tcp-over-dns (TCP-over-DNS) was released in 2008. It has a Java based
server and a Java based client. It runs on Windows, Linux and Solaris. It
supports LZMA compression and both TCP and UDP traffic tunneling. [4]

OzymanDNS
OzymanDNS is written in Perl by Dan Kaminsky in 2004. It is used to
setup an SSH tunnel over DNS or for file transfer. Requests are base32
encoded and responses are base64 encoded TXT records. [4]

iodine

iodine is a DNS tunneling program first released in 2006 with updates as
recently as 2010. It was developed by Bjorn Andersson and Erik Ekman.
Iodine is written in C and it runs on Linux, Mac OS X, Windows and
others. Iodine has been ported to Android. It uses a TUN or TAP
interface on the endpoint. [4]

SplitBrain SplitBrain is a variant of OzymanDNS.

DNScat-P / dnscat2

DNScat (DNScat-P) was originally released in 2004 and the most recent
version was released in 2005. It was written by Tadeusz Pietraszek.
DNScat is presented as a “Swiss-Army knife” tool with many uses
involving bi-directional communication through DNS. DNScat is Java
based and runs on Unix like systems. DNScat supports A record and
CNAME record requests (Pietraszek, 2004). Since there are two utilities
named DNScat, this one will be referred to as DNScat-P in this paper to
distinguish it from the other one. [4]

DNScapy

DNScapy was developed by Pierre Bienaime. It uses Scapy for packet
generation. DNScapy supports SSH tunneling over DNS including a
Socks proxy. It can be configured to use CNAME or TXT records or both
randomly. [4]

TUNS

TUNS, an IP over DNS tunnel, was developed by Lucas Nussbaum and
written in Ruby. It does not use any experimental or seldom used record
types. It uses only CNAME records. It adjusts the MTU used to 140
characters to match the data in a DNS request. TUNS may be harder to
detect, but it comes at a performance cost.

PSUDP

PSUDP was developed by Kenton Born. It injects data into existing DNS
requests by modifying the IP/UDP lengths. It requires all hosts
participating in the covert network to send their DNS requests to a
Broker service which can hold messages for a specific host until a DNS
request comes from that host. The message can then be sent in the
response.

Your Freedom
HTTPS/UDP/FTP/DNS/ECHO VPN & tunneling solution for Windows,
Mac OSX, Linux and Android. Bypass proxies and access the Internet
anonymously

Hexify
A tool is developed by Infoblox to do the penetrating test for DNS
tunneling.

Appendix: Malware List
Malware Name Description

DNS_TXT_Pwnage
A backdoor capable of receiving commands and PowerShell scripts from
DNS TXT queries.

DNSMessenger
DNSMessenger is Remote Access Trojan (RAT) that opens a backdoor so
that hackers can control the compromised machine remotely

OilRig - BONDUPDATER
Trojan against a Middle Eastern government can use A records and TXT
records within its DNS tunneling protocol for its C2 communications

 

Get updates from Palo Alto Networks!
Sign up to receive the latest news, cyber threat intelligence and research from us

By Alex Hinchliffe
March 15, 2019 at 9:00 AM
Category: Unit 42, Unit 42
Tags: DNS, dns tunneling

th

Email address Subscribe

reCAPTCHA
I'm not a robot

Privacy  - Terms

By submitting this form, you agree to our Terms of Use and acknowledge
our Privacy Statement.

© 2023 Palo Alto Networks, Inc. All rights reserved.

 
Popular Resources

Resource Center

Blog

Communities

Tech Docs

Unit 42

Sitemap

Legal Notices

Privacy

Terms of Use

Documents

Account

Manage Subscriptions

Report a Vulnerability

SHARE 

Under Attack?About Unit 42 Services Unit 42 Threat Research Partners Resources

https://unit42.paloaltonetworks.jp/dns-tunneling-how-dns-can-be-abused-by-malicious-actors/
https://unit42.paloaltonetworks.com/unit42-oilrig-deploys-alma-communicator-dns-tunneling-trojan/
https://unit42.paloaltonetworks.com/unit42-oilrig-deploys-alma-communicator-dns-tunneling-trojan/
https://unit42.paloaltonetworks.com/unit42-oilrig-uses-updated-bondupdater-target-middle-eastern-government/
https://unit42.paloaltonetworks.com/darkhydrus-delivers-new-trojan-that-can-use-google-drive-for-c2-communications/
https://tools.ietf.org/html/rfc1034.html
https://tools.ietf.org/html/rfc1035.html
https://unit42.paloaltonetworks.com/wp-content/uploads/2020/03/Figure-1.-Simplified-DNS-operation.jpg
https://github.com/alex/what-happens-when
https://www.rsreese.com/parsing-microsoft-dns-server-logs/
https://unit42.paloaltonetworks.com/wp-content/uploads/2020/03/Figure-2.-Example-C2-DNS-query-operation.jpg
https://unit42.paloaltonetworks.com/wp-content/uploads/2020/03/Figure-3.-Server-side-DNS-logs-tracking-C2-communication.jpg
https://unit42.paloaltonetworks.com/unit42-orcus-birth-of-an-unusual-plugin-builder-rat/
https://unit42.paloaltonetworks.com/unit42-oilrig-deploys-alma-communicator-dns-tunneling-trojan/
https://unit42.paloaltonetworks.com/wp-content/uploads/2020/03/Figure-4.-Example-C2-DNS-query-with-TXT-type-response.jpg
https://www.paloaltonetworks.com/resources/datasheets/dns-security-service
https://attack.mitre.org/techniques/T1048/
https://attack.mitre.org/techniques/T1320/
https://attack.mitre.org/techniques/T1094/
https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152
https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152
https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152
https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152
https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152
https://www.sans.org/reading-room/whitepapers/dns/detecting-dns-tunneling-34152
https://unit42.paloaltonetworks.com/author/alex-hinchliffe/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/dns/
https://unit42.paloaltonetworks.com/tag/dns-tunneling/
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy
https://twitter.com/Unit42_Intel
https://github.com/pan-unit42
https://www.paloaltonetworks.com/resources
https://www.paloaltonetworks.com/blog/
https://www.paloaltonetworks.com/communities
https://docs.paloaltonetworks.com/
https://unit42.paloaltonetworks.com/
https://www.paloaltonetworks.com/sitemap
https://www.paloaltonetworks.com/legal-notices/privacy
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal
https://start.paloaltonetworks.com/preference-center
https://www.paloaltonetworks.com/security-disclosure
https://start.paloaltonetworks.com/contact-unit42.html
https://www.paloaltonetworks.com/unit42
https://www.paloaltonetworks.com/unit42/about

